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(4) Introduction

Computer-aided diagnosis (CAD) has been shown to be useful as a second opinion to radiologists
for breast cancer detection on mammograms. All current CAD systems have been developed for
digitized screen-film mammograms. With the recent advent of full field digital mammography (FFDM)
systems, it is important to develop CAD systems specifically designed for direct digital mammograms
(DMs) in order to fully exploit the advantages of FFDM. Although many computer vision techniques
developed for digitized films may be used for DMs, proper adaptation and extensive training of the
current algorithms for the new type of images will be required. More importantly, new techniques still
need to be developed to further improve the current algorithms.

The goal of the proposed research is to develop a CAD system for FFDM using advanced
computer vision techniques. The proposed CAD system will assist radiologists with detection and
classification of breast lesions. Previous CAD methods for lesion detection and characterization are
generally based on image features extracted from a single view. Our proposed approach is distinctly
different from the previous approaches in that innovative techniques will be developed to fuse image
information from multiple views and bilateral mammograms to improve lesion detection and
characterization. We hypothesize that these advanced intelligent techniques will lead to an effective CAD
system for FFDM.

The following specific aims will be addressed: (1) Collection of a database of DMs and design
of a database management system. (2) Development of single-view computer vision techniques for
mass detection and classification in DMs. (3) Development of single-view computer vision
techniques for microcalcification detection and classification in DMs. (4) Development of methods
for correlation of image information from two-view mammograms. (5) Development of methods for
correlation of image information from bilateral mammograms. (6) Comparison of the detection and
classification accuracy of the multiple-image fusion CAD system for DMs with the performance of
the one-view CAD system and other CAD systems by receiver operating characteristic (ROC)
analysis.

We will first adapt our current algorithms for digitized mammograms to DMs, taking into account
the differences in the imaging characteristics between DMs and digitized film mammograms. In addition,
new computer vision techniques will be developed in each of the four areas to improve the current
methods and to exploit the higher contrast sensitivity and higher detective quantum efficiency of digital
mammography detectors over screen-film systems. We will develop novel regional registration methods
for identifying corresponding lesions on craniocaudal (CC) and mediolateral oblique (MLO) views and
comparing bilateral mammograms. The multiple image information will be fused with fuzzy
classification to reduce false positives and to improve lesion detection sensitivity. Multiple-view features
of a lesion will be merged using neural networks or other classifiers for classification of malignant and
benign lesions. A large database of DMs will be collected from our patient population and extensive
training and independent testing of the new CAD system will be performed. The test performance of the
advanced multiple-image fusion CAD algorithms for detection and characterization of lesions on DMs
will be compared with the one-view approach on DMs as well as the performances of CAD systems for
digitized film mammograms using ROC methodology.

Digital mammography not only has the potential to detect breast cancer in an earlier stage, it will
also facilitate consultation via teleradiology in remote or rural regions where expert mammographers may
not be readily available. An effective CAD system will be particularly useful for providing an additional
on-site or remote second opinion. This will be highly relevant to women in the military, especially when
they are stationed in remote areas. FFDM in combination with CAD will fully utilize the potential of
digital mammography to improve the health care of women both in the military and in the general
population.
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(5) Body

This is the final report of our project. In the project period (4/20/98-4/19/03), we have
performed a number of studies to develop the digital stereoscopic imaging technique. The detailed
studies and results have been reported previously in the annual progress reports. A summary of some
of the important accomplishments follows.

(A) Collection of database

We have been collecting a database of digital mammograms (DMs) with mammographic
masses or microcalcifications for the development of our computer-aided diagnosis (CAD)
algorithms. We have collected about 80 cases. The patients were diagnosed with abnormalities in
their mammograms during their normal clinical care, either by routine screening or by referral to our
breast imaging clinic for evaluation. The digital mammograms were acquired with a GE Senographe
2000D full field digital mammography (FFDM) system. The system has a flat panel detector
consisting of amorphous Si active matrix with CsI phosphor. The pixel size of the system is 100 pum
X 100 pm. The gray level resolution of the system is 14 bits for the raw images and 12 bits for the
processed images. After acquisition, the digital image files are transmitted to the Siemens Archive
which is the PACS system used in our department for storage of all clinical digital images.

With Institutional Review Board (IRB) approval, we retrieved the digital mammograms from
the Siemens Archive to our laboratory. We have developed a database management program based on
Microsoft Access to process the images downloaded to our system. For each mammogram file, all
patient identifiers are first removed from the image header. The patient name is replaced with a code
number. The image is then named by the code number, the view (craniocaudal, mediolateral oblique,
or mediolateral), and the exam year. A record is also generated in the database file for each image.
The record keeps the code number, the lesion type, the view, and the exam date information for each
case. When the pathology of the case is available, the malignant or benign information of the lesion
is also entered. Each case in the database is read by an experienced MQSA radiologist to mark the
lesion location. For microcalcification cases, the radiologist measures the diameter of the cluster, and
provides description of its distribution, morphology, and visibility of the microcalcifications. For
mass cases, the radiologist measures the diameter of the mass, and provides description of its margin,
shape, spiculated or non-spiculated, the visibility, and the density of the mass relative to that of the
parenchyma. For all cases, the radiologist also provides BI-IRADS description of the breast density
and estimates the likelihood of malignancy of the lesion. These descriptions are entered into the
database for each case as a reference for future analysis.

(B)  Pre-processing technique for digital mammograms

DMs generally are pre-processed with proprietary methods by the manufacturer of the FFDM
system before being displayed to readers. The image pre-processing method used depends on the
manufacturer of the FFDM system. In an effort to develop a CAD system that is less dependent on the
FFDM manufacturer's proprietary preprocessing methods, we use the raw FFDM as input to our CAD
system. We are developing a multi-scale preprocessing scheme for image enhancement.
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Methods:

Multi-scale methods have been used for contrast enhancement of medical images recently.
Since a multi-scale method uses the information from a large number of frequency channels extracted
from the image adaptively, it is more flexible and versatile than the commonly used enhancement
methods, such as unsharp masking, which uses a small number of frequency channels. Two types of
multi-scale methods have been used as the preprocessing methods for the contrast enhancement of
mammograms: the wavelet method and the Laplacian pyramid method. A previous study has shown
that, for image enhancement purpose, using a Laplacian pyramid method has more advantages than
using the fast wavelet transformation (1). In this project, therefore, we chose the Laplacian pyramid
method as our preprocessing method.

A flow-chart of our preprocessing method is shown in Fig. 1. In brief, the breast region is
first segmented automatically by using Otsu's method into the background and the breast region.
Second, the Laplacian pyramid method is used to decompose the breast image into multi-scales. A
nonlinear weight function based on the pixel gray level from each of the low-pass components is
designed to enhance the high-pass components. The details are described below.

GE’s Raw Mammograms

}

Segmentation of Breast Region

!
Decomposition by Laplacian Pyramid

Composition and
Nonlinear Image Enhancement

!
[ Preprocessed Mammograms ]

Fig. 1. Flowchart of the method for pre-processing of the raw digital
mammogram before the CAD algorithm.

(a) Segmentation of Breast Region

A two-step algorithm was developed for the segmentation of breast region. First, Otsu’s
method is used to calculate a threshold and binarize the original image. Second, a labeling method
using 8-connectivity is used to identify the connected regions on the binary image. The region with
the largest area will be considered to be the breast region.

(b) Decomposition by Laplacian pyramid
The Laplacian pyramid decomposition is a multi-scale method that was first introduced as an

image compression technique (2). The general scheme is shown in Fig. 2. The Laplacian pyramid is
a sequence of error image L,,L,,--,L,. Each is the difference between two levels of the Gaussian
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pyramid. The decomposition of the image from level ! to level I+ can be expressed mathematically
as in the following equation:

L, =g, —Expand(g;,) 1)
where
2 & i-m j-n
Expand(g,+1>=4"I=Z_2n§w<m,n>-g,<—2—, =) @
2 2
g = Z Zw(m, n)g;2Qi+m22j+n) 3)
m=-2n=-2

(ociginal image) freconstrasbed lmage)

Fig. 2. Laplacian pyramid decomposition and reconstruction of an image.

(¢) Reconstruction and nonlinear image enhancement

The original image can be recovered by summing all the levels of the Laplacian pyramid.
For the purpose of image enhancement, the image at each level of the Laplacian pyramid that
corresponds to a bandpass image is mapped by a nonlinear function. Several types of nonlinear
function have been examined for enhancement of x-ray images. In ref. (3), a power law with a linear

lower and upper cutoff was used. Stahl et al (4) used a power law bounded by linear functions for
very small and very large contrast.




In this study, we used a nonlinear function that incorporates the information from each
bandpass image. The defined nonlinear function is given by

r(l) = a- Expand(g,,1)+ B -(Expand(g,,1))" - L, @
where @, f, and p are the constant values experimentally chosen for each frequency level.
Results:
A set of digital mammograms consisting of the craniocaudal (CC) view and the mediolateral

oblique (MLO) view of both breasts of the patient were used for training and testing the
preprocessing method.

Fig. 3 shows an example of the segmentation of breast region. Fig. 4 shows the
enhancement results of Fig. 3 obtained by using different mapping functions. The processed image
enhanced by the GE proprietary method is also shown for comparison. The results obtained with the
enhancement functions in ref. (1) and ref. (2) showed over-enhancement inside the breast and under-
enhancement around the breast boundary. The GE processed image and our processed image have
similar appearance.

Fig. 3 An example of segmentation of breast region. Left: GE raw image. Right: the result of
segmentation of breast region.




© @)
Fig. 4. The results of enhancement by using different mapping functions. (a) Using
enhancement function in ref (1). (b) Using enhancement function in ref. (2). (c)
our processed image. (d) GE processed image.
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(C) Comparison of Laplacian preprocessing method with GE method by evaluation of mass
detection accuracy

For comparison of the GE processed image and our processed image, we analyzed the
relative performance of our CAD scheme on these two types of images.

Methods:

Our CAD system consisted of four steps. The input mammogram is first processed with an
adaptive density-weight contrast enhancement (DWCE) filter followed by clustering-based region
growing to identify suspicious breast structures. Each of these structures is processed by a local
refinement stage. Morphological and texture features are then extracted from the refined objects.
Rule-based and linear classifiers have been trained with digitized mammograms previously to
differentiate masses from normal tissues. In this pilot study, we evaluated the differences in detection
accuracy between digital mammograms preprocessed by the GE method and by our Laplacian
pyramid method as a measure of the image information on the images.

A data set of 58 digital mammograms was randomly selected from our database. The GE
processed images are the images directly output by the FFDM system for display to the radiologists
for interpretation. The raw digital images are usually not read by radiologists. Our GE FFDM system
was set up so that the both the GE processed images and the raw images are sent from the system and
stored in the Siemens Archive. We downloaded the raw images for each case to our laboratory for
preprocessing with our Laplacian pyramid method as described above. The mass detection system
that was trained with digitized film mammograms in our previous studies was applied to the two sets
of images. Since the CAD system performance will likely be degraded similarly for both types of
images, the relative performance of the mass detection accuracy may not depend on retraining.
Therefore, in this comparison study, we used the CAD system before it was retrained for digital
images.

100
90
80
70
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50 ;
40
30
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0

True positive fraction (%)

01 23 456 7 8 910
The number of false positive per image

Fig. 5. Comparison of FROC curve for mass detection of mass on GE processed
mammograms and our processed mammograms. Solid line: our processed
mammograms. Dash-dot line: GE processed mammograms.
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Results and Conclusion:

The detection accuracy of the CAD system on the digital mammograms is evaluated by free-
response receiver operating characteristic (FROC) analysis. Fig. 5 shows the comparison of FROC
curves for detection of masses on the GE images and on our processed images. The sensitivity of the
mass detection on the two types of processed images is within a few percent over the entire FP range.
This result confirms that the information available for mass detection is similar in the two types of
processed images.

After this baseline is established, we can adjust the preprocessing parameters to optimize the
CAD system without depending on the manufacturer’s algorithm. We believe that this will allow us to
develop a CAD system that can be adapted to other FFDM systems easily.

(D) Comparison of density segmentation on digitized screen-film mammograms and digital
mammograms

Previous studies have found that there is a strong correlation between mammographic breast
density and the risk of breast cancer. Mammographic breast density has been used by researchers in
many studies to estimate breast cancer risk of epidemiological factors, monitor the effects of
preventive treatments such as tamoxifen or dietary interventions, monitor the breast cancer risk of
hormone replacement therapy, and investigate factors affecting mammographic sensitivity and cancer
prognosis. Digital mammographic systems have recently been introduced into clinical use. In this
study, we compared the breast density estimated on pairs of digital mammogram (DM) and digitized
screen-film mammogram (SFM) obtained from the same patients.

Methods:

We are comparing image information on DMs and SFMs for radiologist’s interpretation and
computerized image analysis. One hundred forty-five pairs of DM and SFM (76 CC views and 69
MLO views) were collected with IRB approval from 68 patients. The time interval between the DM
and SFM ranged from O to 118 days (median=21 days). The SFMs were acquired with GE DMR
systems and the DMs were acquired with the GE Senographe 2000D system. Both the DMs and the
SFMs were acquired with automated exposure techniques that selected the appropriate target, filter,
and kVp. The SFMs were digitized with a laser film scanner. The breast boundaries on the DMs and
SFMs were detected automatically by the computer. The mammograms were displayed on a
workstation with a graphical user interface (see Fig. 6) that allowed interactive thresholding of the
gray level histograms to segment the dense region from the fatty region. The DMs and SFMs were
segmented independently in separate sessions so that the observer could not compare the density of
the corresponding DM and SFM. Hard copies of the displayed images were available for reference
during segmentation. The mammographic density was estimated as the percent dense area relative to
the breast area, excluding the pectoral muscle in the MLO views.

Results:
An example of density segmentation with interactive thresholding using the graphical user

interface is shown in Fig. 6. Fig. 7 shows the comparison of the percentage area of breast density on
both digitized SFMs and DMs by an observer.
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Fig. 6. An example of density segmentation on digital mammograms. Left: GE processed image.
Middle: Our processed image. Right: segmentation result of breast density.
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Fig. 7. Comparison of the percent mammographic density obtained on digital and digitized
mammograms. Left: CC view, correlation coefficient = 0.94; Right: MLO view,
correlation coefficient = 0.92. Dash line: linear regression of the data; solid line: diagonal.

The correlation between the mammographic density on SFM and DM was 0.94 and 0.92, the
root-mean-square residual was 4.5% and 4.6%, and the average ratio of mammographic density
estimated on SFM to that on DM of the same breast was 1.18 and 1.22, respectively, for CC and
MLO views. The differences in the percent dense area between the DM and SFM were statistically
significant (paired t test: p<0.0000001) for both views. The DMs used harder beams (Mo/Mo 4.5%,
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Mo/Rh 22.4%, Rh/Rh 73.1%) while the SFMs used softer beams (Mo/Mo 44.2%, Mo/Rh 48.1%,
Rh/Rh 7.8%). The peak potential used for DM was 1 to 5 kVp higher than that for SFM in 84% of
cases.

Conclusion:

Breast density on DMs generally appears to be lower than that on SFMs because of the harder
beam quality used and image processing applied to the DMs. The lower density may improve the
mammographic sensitivity for lesion detection on dense breasts. However, for patients with SFMs
and DMs taken over time, comparison of serial mammograms for breast density changes will be
problematic.

(E) Computer aided diagnosis system for mass detection: comparison of performance on
digital mammograms and digitized mammograms

A CAD system for the detection of masses on digitized screen-film mammograms (DFMs)
was developed in our previous studies. We are developing a mass detection system for mammograms
acquired directly by a FFDM system. In this study, we compared the performance of the two systems
on pairs of DM and DFM images obtained from the same patients.

Methods:

As discussed above, our CAD system consisted of four steps: processing with an adaptive
DWCE filter, clustering-based region growing and local refinement, extraction of morphological and
texture features, and rule-based and linear classification. In this study, the mass detection system was
adapted to DMs by retraining. A data set of 65 cases containing 135 DMs acquired with a GE FFDM
system and the 135 DFMs of the same view for the same breast was used. The time interval between
the DFM and the corresponding DM was 0 to 118 days. The data set contained 69 masses. The true
locations of the masses were identified by an experienced radiologist. The CAD system trained with
screen-film system was applied to the set of DFM images. For the DM images, we preprocessed the
raw images with the Laplacian pyramid technique, described above. The CAD system parameters
were retrained and then applied to the DM images.

Results:

With initial retraining of the CAD system, our mass detection scheme could perform equally
well on the DFMs and the DMs. Fig. 8 shows the comparison of case-based FROC curves for mass
detection on the DFMs and DMs. The FROC curves achieved a sensitivity of 80% at 2.1 FP
marks/image for both the DM and DFM images. The difference in sensitivity between the two types
of images was less than 10% over the entire FP ranges shown.

Conclusion:
With retraining, our mass detection CAD scheme can be useful for detecting masses on both

DMs and DFMs. Further study is underway to improve the various stages of the mass detection
system based on the properties of the DM images.
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Fig. 8. Comparison of case-based FROC curves for mass detection on the DFM and DM
images. Solid line: DMs. Dash-dot line: DFMs.

(F)  Adaptive ring filter for enhancement of masses

As discussed above, our CAD system consisted of four steps: enhancing masses or breast
structures using an image enhancement filter, clustering-based region growing and local refinement,
extraction of morphological and texture features, and rule-based and linear classification. The first
mass enhancement step is an important step because it accentuates the mass or other breast structures
on an input image to facilitate screening the image for candidate lesions. If the lesion is missed in
this step, it will not be recovered in later steps. For our mass detection program previously developed
for digitized screen-film mammograms, we developed a density weighted contrast enhancement
(DWCE) filter for image enhancement. In the current development of a mass detection system for
direct digital mammograms (DMs), we are investigating the effectiveness of different types of filters

for enhancing mammographic masses. In this study, an adaptive ring filter is being compared with
the DMCE filter.

Methods:

The adaptive ring filter is a type of convergence index filter that was first introduced for
detection of nodules on chest x-rays (5). In brief, the gradient vector directions around each pixel in
the breast region are calculated. At a mass region, the pixel values tend to be high near the center of
the mass and decrease as the distance from the center increases, similar to the height around the peak
of a mountain. The gradient vector directions around the mass therefore tend to converge towards the
center of the mass. After filtering by the ring filter, the convergence points in the breast region can be
considered to be the candidate regions of masses. We chose the top 20 local maximum points in the
breast image as the candidates. The corresponding objects were obtained by using a clustering
method. A flow-chart was shown in Fig. 9.
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Fig. 9. The flow-chart for detection of candidates of masses

A data set of 65 cases containing 135 DMs acquired with a GE FFDM system as described in
Section (E) was used in this comparison study. The DM images were processed in two ways: one is
that the DWCE filter was used to enhance the images and thus to facilitate the detection of mass
candidates, the other way is that the DWCE filter was replaced by the adaptive ring. For both filters,
the next three steps of the mass detection algorithm were the same as those discussed above, except
that the parameters used in these steps were retrained for DMs separately for use with the adaptive
ring filter and the DWCE filter.

Results:
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Fig. 10. | Comparison of adaptive ring filter (solid line) with DWCE filter (dash line). (a) Image-
based FROC curve. (b) Case-based FROC curves
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The FROC curves for the DWCE filter and the adaptive ring filter are compared in Fig. 10.
The sensitivity of mass detection using the adaptive ring filter was improved by up to 15% over the
range of FPs shown, either considering the detection by image or by case.

Conclusion:

The adaptive ring filter therefore seems to be more effective than the DWCE filter in
enhancing the masses for automated detection. Further study is underway to collect a larger data set,
to optimize the parameters in the different stages of the CAD system, and to confirm the performance
of the adaptive ring filter.

(G) Joint two-view information for computerized microcalcification detection

The CAD systems developed to date use single-view mammograms for lesion detection. In
mammoraphic interpretation, radiologists find it very useful to combine the information from two
views (CC and MLO views) to confirm true lesions and to exclude false lesions. In our project we
propose to develop methods to correlate the information from two mammographic views so as to
improve the detection accuracy of the CAD system. In the following, we discuss a preliminary study
that we performed to improve detection of microcalcifications.

Methods:

Figure 11 shows an outline of the joint two-view detection method being developed.
Microcalcification cluster candidates are first located using our previously developed single-view
lesion candidate detection algorithm. To reduce the false-positives among the detected objects, each
object is classified using two different classifiers that work in parallel. The first classifier is similar to
the single-view lesion candidate classifier that has been used in our previously developed algorithm.
The second classifier, referred to as the correspondence classifier, uses object pairs from the CC and
MLO views to characterize whether the object pair consists of two true positives, one on each view.
The scores from these two classifiers are merged, and the merged score is used for false-positive
reduction.

' Single-view Single-view .
‘“,I:I;‘?v =P lesion candidate | lesion candidatet®» Fusion Der::i::fn
detection classification A
—— JOint two-view
—_| classification
Single-view Single-view 4
v?ecw —» lesion candidate | lesion candidatet® Fusion D?:Z‘::fn
detection classification

Fig. 11. The block diagram of the computerized joint two-view method for
microcalcification detection.
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(a) Single-View Lesion Candidate Detection and Classification

The parameters of our single-view lesion candidate detection algorithm were adjusted to
provide high-sensitivity, at the cost of a relatively large number of false-positives (FPs). The single-
view lesion candidate classification step aims at reducing the FPs while maintaining a high
sensitivity. The classifier was designed using stepwise feature selection and linear discriminant
analysis (LDA) trained on an independent training set. The feature space used in stepwise selection
included the texture and morphological features of the microcalcification clusters, as well as the
number of microcalcifications in a cluster and the output scores of a convolution neural network
(CNN).

(b) Joint Two-View Classification of True and False Pairs

Joint two-view pair classification distinguishes between true (TP-TP) pairs and false pairs
(TP-FP, FP-TP, and FP-FP) by using the similarities between the two objects that constitute the pair.
The initial step in this task is to define the object pairs. As described in our previous studies (6) (7),
we define the pairs based on the difference between the nipple-to-object distances (NODs) on the CC
and MLO views. For each nodule candidate C,; detected on the CC view, the NOD, D,;, is computed,
and an annular region of width 2AR, centered at the nipple and enclosed between the radii D+AR is
defined on the MLO view. If the centroid of an object Cy; on the MLO view is found inside this
annular region, then an object pair (C., Cy;) is formed. The width of the annular region, 2AR, is
determined using training data as 6.0 cm.

A correspondence classifier, based on stepwise feature selection and LDA, is used to estimate
the likelihood that the defined pair is a true pair. The feature space used in stepwise selection
included the similarity measures of the features that are used in single-view lesion candidate
classification.

(c) Information Fusion

The correspondence classifier produces a correspondence score for each object pair. This
score is converted into a two-view object score before being combined with the single-view object
score. The fusion score for an object is defined as the average of its single- and two-view object
scores in this preliminary study.

(d) Data Set

Our training data set consisted of 108 pairs of biopsy-proven CC and MLO mammograms
containing microcalcification clusters, collected with IRB approval at the University of Michigan
(UM). The mammograms were digitized with a LUMISYS 85 laser scanner at a pixel size of 50 um
x 50 um and 4096 gray levels. The digitizer was calibrated so that the gray level values are linearly
proportional to the optical density (OD) within the range of 0.1 to 4.0 OD units. The mammograms
are filtered with a 2x2 box filter and subsampled by a factor of 2 to produce a 0.1 mm x 0.1 mm
images prior to processing.

Our independent test set consisted of 116 pairs of mammograms, selected from the University
of South Florida (USF) public mammogram database (8). The digitization characteristics of these
mammograms were similar to those of the UM database, with the difference that a Lumisys 200 laser
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scanner was used. The test data set contained 254 microcalcification clusters on 232 mammograms.
The FP rate was determined by applying the algorithm to an additional 76 normal mammogram pairs
(152 mammograms) from the USF data set.

Results:

The detection accuracy is evaluated using film-based and case-based FROC curves. In film-
based analysis, a microcalcification cluster detected on one view but missed on the other view is
considered as one TP and one false-negative (FN). This method provides a more conservative
sensitivity estimate than a case-based analysis. In case-based analysis, a TP was defined as marking a
malignant cluster on at least one view.

The prescreening algorithm detected 89% (226/254) of the clusters with an average of 3.5
FPs/image (539/152) on the normal mammograms. Based on the NOD, a total of 5929 object pairs
were defined on the normal test images (51 object pairs/mammogram pair) and 523 object pairs were
defined on the abnormal test images (6.8 object pairs/mammogram pair). The object pairs were
classified by the correspondence classifier designed using the training set. The pair scores were
converted into object scores and were fused with single-view scores. The final FROC curve obtained
by the fusion method is compared to the single-view FROC curve in Figure 12 and 13, for film-based
scoring and case-based scoring, respectively. The single-view detection algorithm had a film-based
sensitivity of 86% at 0.6 FPs/image. At the same sensitivity, the two-view detection algorithm
produced 0.4 FPs/image. The sensitivity of the single-view and two-view detection algorithms was
79% and 83%, respectively, at 0.1 FPs/image. If correct detection was defined as marking a malignant
cluster on at least one view, the two-view detection algorithm achieved a sensitivity of 90% at 0.1
FPs/image.

Single-view scoring
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Two-view scoring
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Fig. 13. Comparison of the case-based FROC curves for the single-view detection
and fusion methods.

Conclusion:

The correspondence of geometric, morphological, textural and neural network features of
cluster candidates on two different views provides valuable information for improving the accuracy of
computerized microcalcification detection. Further study is underway to optimize the feature
extraction and selection processes, as well as the trainnig of the correspondence classifier.




(6)

)

Key Research Accomplishments

e Collection of a database of digital mammograms for development of the CAD algorithms

------ (Task 1)

Design a database management system for archiving the DMs, BIRADS ratings and lesion
evaluation provided by radiologists on each lesion -------- (Task 1)

Pre-processing technique for raw digital mammograms so that the CAD algorithms will
be independent of the manufacturer’s proprietary image processing algorithms -------
(Task 2 and Task 3)

Comparison of Laplacian preprocessing method with GE method by evaluation of mass
detection accuracy -------- (Task 2)

Comparison of density segmentation on digitized screen-film mammograms and digital
mammograms, understanding of the differences between the properties of digital
mammograms and digitized mammograms ------- (Task 2, Task 3, Task 5)

Computer aided diagnosis system for mass detection: comparison of performance on
digital mammograms and digitized mammograms ------- (Task 2)

Comparison of density weighted contrast enhancement filter and adaptive ring filter for
enhancement of masses as the first step in CAD algorithm, evaluation of mass detection
performance by FROC analysis ------ (Task 2, Task 6)

Joint two-view information for computerized microcalcification detection ------ (Task 3,
Task 4, Task 6)

Reportable Outcomes

As a result of the support by the BCRP grant, we have conducted studies in CAD for

mammography and published the results. The publications in this project year are listed in the

following.

Conference Proceedings:

1. Chan HP, Sahiner B, Hadjiiski LM, Petrick N, Zhou C. Design of three-class classifiers in

computer-aided diagnosis: Monte Carlo simulation study. Proc SPIE 5032; 2003 (in press).

2. Hadjiiski L, Chan HP, Sahiner B, Helvie MA, Roubidoux MA, Blane C, Paramagul C, Petrick N,

Bailey J, Klein K, Foster M, Patterson S, Adler D, Nees A, Shen J. ROC study: Effects of
computer-aided diagnosis on radiologists’ characterization of malignant and benign breast masses
in temporal pairs of mammograms. Proc SPIE 5032; 2003 (in press).
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Conference Presentation:

1.

Zhou C, Chan HP, Sahiner B, Hadjiiski LM, Paramagul C, Petrick N. Computer-aided diagnosis
on mammograms using multiple image analysis: nipple identification for registration of multiple
views. Presentation at the 88™ Scientific Assembly and Annual Meeting of the Radiological
Society of North America, Chicago, IL, December 1-6, 2002. Radiology 2002; 225(P): 645.

Chan HP, Sahiner B, Hadjiiski LM, Petrick N, Zhou C. Design of three-class classifiers in
computer-aided diagnosis: Monte Carlo simulation study. Presented at the SPIE International
Symposium on Medical Imaging, San Diego, CA, February, 2003.

Hadjiiski LM, Chan HP, Sahiner B, Helvie MA, Blane C, Paramagul C, Petrick N, Roubidoux
MA, Bailey J, Klein K, Foster M, Patterson S, Adler D. ROC Study: Effects of Computer-Aided
Diagnosis on Radiologists’ Characterization of Malignant and Benign Breast Masses in Temporal
Pairs of Mammograms. Presented at the SPIE International Symposium on Medical Imaging, San
Diego, CA, February, 2003.

Hadjiiski LM, Helvie MA, Sahiner B, Chan HP, Roubidoux MA, Nees A, Patterson S, Blane C,
Paramagul C, Bailey J, Klein K, Foster M, Adler D, Shen J. ROC Study: Effects of Computer-
Aided Diagnosis on Radiologists’ Characterization of Malignant and Benign Breast Masses in
Two View Temporal Pairs of Mammograms. Submitted for presentation at the 89™ Scientific
Assembly and Annual Meeting of the Radiological Society of North America, Chicago, IL,
November 30-December 5, 2003.

Chan HP, Wei, J, Zhou C, Helvie MA, Roubidoux MA, Bailey J, Hadjiiski LM, Sahiner B.
Comparison of mammographic density estimated on digital mammograms and screen-film
mammograms. Submitted for presentation at the 89™ Scientific Assembly and Annual Meeting of
the Radiological Society of North America, Chicago, IL, November 30-December 5, 2003.

Hadjiiski LM, Chan HP, Sahiner B, Zhou C, Helvie MA, Roubidoux MA. Computerized
Regional Registration of Corresponding Masses and Microcalcification Clusters on Temporal
Pairs of Mammograms for Interval Change Analysis. Submitted for presentation at the 89™
Scientific Assembly and Annual Meeting of the Radiological Society of North America, Chicago,
IL, November 30-December 5, 2003.

Sahiner B, Chan HP, Hadjiiski LM, Helvie MA, Roubidoux MA, Petrick N. Computerized
detection of microcalcifications on mammograms: Improved detection accuracy by combinin
features extracted from two mammographic views. Submitted for presentation at the 89
Scientific Assembly and Annual Meeting of the Radiological Society of North America, Chicago,
IL, November 30-December 5, 2003.

Petrick N, Chan HP, Sahiner B, Helvie MA, Hadjiiski LM. Evaluation of CAD Mass Detection
on Prior Mammograms Containing Breast Cancers. Submitted for presentation at the 89™
Scientific Assembly and Annual Meeting of the Radiological Society of North America, Chicago,
IL, November 30-December 5, 2003.

Wei, J, Sahiner B, Chan HP, Petrick N, Hadjiiski LM, Helvie MA. Computer Aided Diagnosis
System for Mass Detection: Comparison of performance on Full-Field Digital Mammograms and
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Digitized film Mammograms. Submitted for presentation at the 89" Scientific Assembly and
Annual Meeting of the Radiological Society of North America, Chicago, IL, November 30-
December 5, 2003.

10. Zhou C, Hadjiiski LM, Sahiner B, Chan HP, Helvie MA, Wei, J. Computerized mammographic
breast density estimation: Expectation-Maximization estimation and neural network classification
of breast density. Submitted for poster presentation at the 89™ Scientific Assembly and Annual
Meeting of the Radiological Society of North America, Chicago, IL, November 30-December 5,
2003.

(8) Conclusions

Under the support of this grant, we have investigated various computer-aided diagnosis (CAD)
methods for detection of masses and microcalcifications on mammograms. We first collected a data
set of full field digital mammograms that contain mammographic lesions from our breast imaging
division in the Department of Radiology. The images include the manufacturer’s processed images
and unprocessed (raw) images. We have also developed a database management program to store the
coded case information to facilitate archiving and retrieval of the cases.

To reduce the dependence of our CAD system on the manufacturer’s proprietary image
preprocessing method, we use the raw image as the input to our CAD system. The raw image is first
preprocessed with an in-house developed Laplacian pyramid image enhancement technique. We
designed the processing parameters so that the image appearance is matched to the corresponding
image processed by the GE’s proprietary preprocessing method. To verify the image quality of the
processed image, we evaluated the mass detection accuracy of our CAD algorithm when applied to our
processed images and the GE’s processed images. We found that the detection sensitivities on the two
sets of images were within a few percent over the entire FP range of interest. This result confirms that
our preprocessing method is similar to the GE method. After this baseline is established, we can
adjust the preprocessing parameters to optimize the CAD system without depending on the
manufacturer’s algorithm. We believe that this will allow us to develop a CAD system that can be
adapted to other FFDM systems easily.

We also compared the performance of the mass detection algorithms on digitized screen-film
mammograms and direct digital mammograms. After adjustment of the processing parameters in the
algorithm, the detection accuracies of the algorithms on both sets of images are comparable. This
confirms that the CAD system that was developed for digitized screen-film mammograms can be
adapted to direct digital mammograms.

We therefore started the adaptation of the mass detection algorithm to the digital
mammograms. We first investigated the effects of the image enhancement filter on the accuracy of
mass detection. By replacing the DWCE filter with an adaptive ring filter, we found that the
sensitivity of mass detection can be improved up to 15 %. This provides a foundation upon which we
can further improve the CAD system for digital mammograms by optimization of the various steps in
the detection process.
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We also compared the mammographic density segmented from digitized film mammograms
and direct digital mammograms. Using a data set that contained both types of the images from the
same patients, we found that the correlation of the segmented breast density between the two types of
images is very high. However, the estimated percent dense area on digital mammograms is, on
average, about 5% lower than that estimated from digitized film mammograms. This difference may
lead to improved sensitivity for lesion detection on digital mammograms.

Two-view information fusion method is being developed for correlating the detected lesions on
the two views of mammograms, similar to radiologists’ approach for mammographic interpretation.
We found that the detection accuracy for microcalcifications can be improved by fusing of information
from two mammographic views. This result demonstrates the usefulness of our proposed two-view
fusion methods. We will continue to improve the two-view fusion technique and apply it to both
microcalcification and mass detection.

In conclusion, we have investigated a number of areas in CAD of mammographic lesions. We
have made progress in the six tasks proposed in the project. This lays the strong foundation for us to
continue the development of the CAD system for digital mammograms in the coming years.
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Copies of the following publications are enclosed with this report.
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Design of Three-Class Classifiers in Computer-Aided Diagnosis:
Monte Carlo Simulation Study

Heang-Ping Chan", Berkman Sahiner, Lubomir M. Hadjiiski, Nicholas Petrick®, Chuan Zhou
Department of Radiology, The University of Michigan, Ann Arbor, MI 48109
“Center for Devices and Radiological Health, U.S. Food and Drug Administration, Rockville, MD
20857

~ ABSTRACT

For the development of computer-aided diagnosis (CAD) systems, a classifier that can effectively differentiate
more than two classes is often needed. For example, a detected object on an image may need to be classified as a
malignant lesion, a benign lesion, or normal tissue. Currently, a three-class problem is usually treated as a two-stage,
two-class problem, in which the detected object is first differentiated as a lesion or normal tissue, and, in the second
stage, the lesion is further classified as malignant or benign. In this work, we explored methods for classification of an
object into one of the three classes, and compared the three-class approach with the common two-class approach. We
conducted Monte Carlo simulation studies to evaluate the dependence of the performance of 3-class classification
schemes on design sample size and feature space configurations. A k-dimensional multivariate normal feature space
with three classes having different means was assumed. Linear classifiers and artificial neural networks (ANNs) were
examined. ROC analysis for the 3-class approach was explored under simplifying conditions. A performance index
representing the normalized volume under the ROC surface (NVUS) was defined. Linear classifiers for classification of
three classes and two classes were compared. We found that a 3-class approach with a linear classifier can achieve a
higher NVUS than that of a 2-class approach. We further compared the performance of an ANN having three or one
output nodes with a linear classifier. At large sample sizes, a 3-output-node ANN was basically the same as that of a
one-output-node ANN. When the three class distributions had equal covariance matrices and the distances between pairs
of class means were equal, the linear classifiers could reach a higher performance for the test samples than the ANN
when the design sample size was small; the linear classifier and the ANNs approached the same performance in the limit
of large design sample size. However, under complex feature space configurations such as the class means located
along a line, the class in the middle was poorly differentiated from the other two classes by the linear classifiers for any
dimensionality; the ANN outperformed the linear classifier at all design sample size studied. This simulation study may
provide some useful information to guide the design of 3-class classifiers for various CAD applications.

KEY WORDS: Computer-aided diagnosis, classifier design, 3-class classification, linear classifier, artificial neural
networks, Monte Carlo simulation, likelihood ratio, ROC analysis

1. INTRODUCTION

For the development of computer-aided diagnosis (CAD) systems, a classifier that can effectively differentiate
more than two classes is often needed. For example, in an automated lesion detection and characterization system, it
will be important to differentiate malignant lesions from benign lesions and normal tissue. A common approach is to
treat this as a two-stage classification problem having two classes at each stage; masses are distinguished from normatl
tissue in the first stage, and then are classified as malignant and benign in the second stage. Alternatively, if the main
interest is to detect only malignant lesions, a two-class classifier is trained to differentiate the malignant class from the
combined class of the other two. The two classes that are treated as one may have very different characteristics and the
classification may not be optimal if the classifier is forced to recognize their features as the same. For certain types of
classification tasks, a properly designed 3-class classifier can be more effective in distinguishing one class from the other
two classes. The design of 3-class classifiers has not been investigated systematically in the CAD area. In this work, we
performed a simulation study to explore some properties of the 3-class and 2-class classification schemes.

* chanhp@umich.edu
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2. MATERIALS AND METHODS

For an m-class classification problem in which a feature vector, X, is to be classified into one of m classes, a
common approach is to apply the Bayes’ rule to minimize the misclassification rate'. To accomplish this, the posterior
probability of x belonging to class i is estimated as

p(cix) = g P(c;) p(xfe), fori=1,..,m )

where P(c;) is the prior probability of class c;, p(x|c;) is the probability density of x in class c;, and g is a constant. The
feature vector is then assigned to class k, where k denotes the class that x has the maximum posterior probability,

k=arg max {p(c; | %)} ¢)

However, it is difficult to estimate the posterior probability when the sample size is small. Furthermore, the
misclassification rate does not take into account the fact that different types of misclassifications or correct
classifications have different costs or utilities. A more general formulation of the m-class problem assigns a utility for
each correct and incorrect decision, and optimizes the expected utility. The optimal decision rule depends on the
utilities, as well as the prior probabilities of the classes. Let Py denote the probability of deciding class c; when the true
class is c;, and Uy; denote the utility of deciding class c; when the true class is ¢;. The optimal decision rule is the one that
maximizes the expected utility, which can be written as

m m 3
E{utility} =3, > U P;P(c;) ®
I=1 j=1

The limitation with the classifiers that maximize the correct classification rate or maximize the expected utility
with fixed Uy‘s is that they do not cover the entire range of sensitivity and specificity for the classification task. A
receiver operating characteristic (ROC) analysis will provide the entire range of operating points. However, a 3-class
classification problem will require a six-dimensional (6-D) ROC analysis as follows. For a 3-class problem with classes
a (malignant), b (benign), and n (normal), there are nine possible “decision-truth™ Ij pairs and hence nine probabilities:
P, Paay Pras Pabs Py Pabs Pan, Paay Pane Since the sum of every three of these probabilities is unity, e.g., Pa, + P, + Py,
= 1, only six of the nine probabilities are independent. Therefore, the ROC analysis will include these six possible
variables.

For the 3-class problem, it has been shown that three decision lines that depend on two likelihood ratios (LRs)
will provide the optimal decision boundaries on the LR plane as shown in Fig. 1? (C. E. Metz, private communication).
The likelihood ratio between classes i and j is defined as the ratio of the probability density of x under each class,

LR (x) = p(x|c)/ p(xlc) 4

In Fig. 1, the two LRs are chosen to be LR,, and LRy,. The slopes and intercepts of the decision lines in the likelihood
ratio plane depend on the prior probabilities of the classes, as well as the utilities of the different types of decisions, Uy,
Uga» Unas Uaps Usbs Unbs Uan, Ugp, Unn. The three decision lines always intersect at a common point. Varying the
utilities and the priors over their allowed ranges will move the decision lines over the LR plane. For each configuration
of the decision lines, the six probabilities can be estimated, producing a point in the 6-D ROC space. The complete
treatment of a 6-D ROC analysis is therefore very complicated and has not yet been dealt with. In this study, we
attempted to explore some properties of a 3-class problem under simplifying conditions.

We assume that the utilities can take on values in [0,1]. For correct decisions, the utilities will have the
maximum value of 1, i.e., Ua, = Upp = Un, = 1. If a malignant case is misdiagnosed as normal or benign, the utilities
will be at a minimum of 0, Up, = Uy, = 0. If a normal case is called benign or vice versa, it may not be very harmful or
costly so that the utilities Uy, = Up, = 1. If a normal case or a benign case is called malignant, it will involve additional
diagnostic tests or treatment and also cause patient anxiety or morbidity, the utilities Ua, and U, will be somewhere
between 0 and 1. Under our assumptions that U, and Uy, are variable in (0,1) and the rest of the utilities are fixed as
described above, it can be shown that two of the decision lines are reduced to one (Fig. 2), the third decision line
becomes indeterminate, and the expected utility of the classification task in Eq. (3) depends only on three of the
probabilities, Paa, Pay, and Pa,. The 6-D ROC analysis will therefore be reduced to a 3-D ROC analysis under these
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conditions. An example of the 3-D ROC surface is shown in Fig. 3. Note that Py, is the true-positive fraction (TPF) or
the sensitivity, Py, is the false-positive fraction from the benign class (FPFy,), and Py, is the false-positive fraction from
the normal class (FPF,). This 3-D ROC surface is therefore similar to the commonly used 2-D ROC curve except that
the FPF is split into the benign and normal classes. In analogy with the 2-D ROC analysis, we can define a performance
index as the normalized volume under the 3-D ROC surface (NVUS) given by

Volume under 3D ROC surface 5)

Normalized volume under 3D ROC surface (NVUS) = -
Projected area on the FP plane

Note that the NVUS can be interpreted as the average sensitivity over the range of FPF of interest, similar to the area
under the 2-D ROC curve.

Ideally, if the feature vectors are transformed onto the LR plane, one can vary the decision line and determine
the samples that fall into the region that is decided to be class A. The probabilities Pa,, Pay, and P, can then be
estimated and the 3-D ROC surface generated. However, when the sample size is small, it is difficult to estimate the
probability densities and derive the LRs for each x.

It is well-known that for the two-class classification problem in a k-dimensional feature space, the linear
discriminant analysis projects the k-D feature space onto a 1-D decision axis. The decision boundary is then a threshold
chosen along the decision axis. If the two class distributions are multivariate normal with equal covariance matrices, the
linear discriminant classifier corresponds to the LR classifier and is optimal. This approach may be generalized to an m-
class problem in a k-D feature space. In this case, the k-D feature space is projected to an (m-1)-D decision space, the
decision boundaries are formed by (m-1) boundaries in the decision space®. For a 3-class problem (m=3), the k-D
feature space is projected to a 2-D decision plane and the decision boundaries can be formed by two lines on the plane.
In general, this projection is not optimal because it is not equivalent to a projection onto the LR plane. If the three class
distributions are multivariate normal with equal covariance matrices, the linear transformation to a 2-D decision plane
can be shown to be equivalent to a transformation to the log-likelihood ratio, In(LR), plane and optimal decision
boundaries can be formed on this plane.

In this preliminary study, we studied the 3-class classification problem by linearly projecting the k-D feature
space to the 2-D decision plane and used two linear decision boundaries for differentiating the malignant class from the
benign and the malignant classes. The classification performance was evaluated in the 3-D ROC space as shown in Fig.
3.

The 3-class classification was compared to the approach of treating the benign and normal classes as one (b+n)
class such that the differentiation of the malignant class (class a) from the (b+n) class was considered to be a 2-class
classification problem. The k-D feature space was thus projected to the 1-D decision line by linear discriminant
analysis. This is equivalent to forming a hyperplane in the k-D feature space to separate class a from class (b+n).

We further assumed a simple k-D feature space in which the class distributions were multivariate normal, the
covariance matrices for classes a, b, n were described by I, od, o, respectively, where I was the identity matrix and &
was a constant. The mean vectors for the three classes were located at the vertices of an equilateral triangle. These
characteristics are invariant upon projection to the 2-D decision plane in the 3-class classification approach described
above although the scales may be changed. The 2-D decision plane in the 3-class classification approach shown in Fig.
4(a) and the example of the feature space in 2-D shown in Fig. 4(b) therefore have similar appearances. The symmetry
of the class distributions about the vertical axis simplifies our analysis that follows, but the approaches should be
applicable to non-symmetrical feature spaces.

For the 3-class classification approach, the slopes and intercepts of the linear decision boundaries were varied
over the entire plane. For each set of boundaries, we could calculate the three probabilities, Pa,, Pay, and Py, and
generate a point in the 3-D ROC space. The surface formed by the highest sensitivity (P,,) at each FP location
corresponded to the best decision boundaries. The NVUS was then derived from the highest sensitivity surface relative
to its projected area on the FP plane.
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For the 2-class classification approach with linear discriminant analysis, the best projection of the decision axis
would be parallel to the symmetry (vertical) axis because of the symmetry of the class distributions. The decision
boundary along this axis thus corresponded to a hyperplane perpendicular to the symmetry line. The decision boundary
is illustrated as a horizontal line in the 2-D feature space (Fig. 4(b)). By moving the decision boundary along the
decision axis and scoring the TPF and FPF, we could generate the 2-D ROC curve and derive the area under the ROC
curve, A,.

We compared the 3-class and 2-class approaches in two different ways. First, we compared the area under
ROC curve under similar situations. For the 3-class approach and in our feature space with symmetry, the slice of the 3-
D ROC surface along the diagonal of Py, = P4, was equivalent to the situation of treating class b and class n equally, i.e.,
U = Uan. We calculated the area under the ROC curve obtained from this slice and compared it with the A, obtained
in the 2-class approach. In the second comparison, we modified the 2-class classification approach in the original k-D
feature space. If we allowed the hyperplane to orient at an angle to the symmetry axis (the best projected decision axis
in the linear discriminant analysis), it was similar to taking into consideration that there were different utilities of making
FP decisions from class b or class n. For example, if the slope of the decision boundary was positive as shown in Fig.
5(a), we were less concerned with deciding a class-b sample as class a than deciding a class-n sample as class a so that it
implied Uy, > Uag. On the other hand, if the slope of the decision boundary was negative as shown in Fig. 5(b), we were
less concerned with deciding a class-n sample as class a than deciding a class-b sample as class a so that it implied Uy, <
Uay. Therefore, by varying the slope and intercept of the single decision boundary in the 2-class approach, we could also
generate a 3-D ROC surface and calculate its NVUS. We then compared the NVUS obtained from the 3-class and 2-
class approaches.

Neural Network Classifiers

Another common approach that is often applied to the m-class classification problem is to use an artificial
neural network (ANN) classifier with (m-1) output nodes. During training, the desired output of a sample from the it
class is assigned 1 at the i node and assigned O at all other nodes. Under ideal conditions (sufficiently large training
sample size and proper training), it has been shown that the ANN approaches a Bayes’ classifier and the output for a
given sample at the i node approaches the posterior probability of the sample in the i® class*. Therefore, a properly
trained ANN can be used for transforming the feature space to the LR plane and the 6-D ROC analysis applied.
However, since the available design sample size is often limited in practice, the training of an ANN is usually far from
being ideal. One of the common methods of analyzing the ANN output is to apply a 2-D ROC analysis to the scores of
an individual output node, e.g., the i® node, to distinguish the i® class from the other classes. In this study, we evaluated
the application of ANNs having one output node and three output nodes to the three-class problem. For training of the
ANN with one output node, the desired output of the class-a samples was assigned to be 1 and those of the class-b and
class-n samples were assigned to be 0. This is equivalent to treating the classification task as a 2-class problem without
distinction between class b and class n. For training of the ANN with three output nodes, the desired output of a sample
from the i® class (i = 1, 2, 3) was assigned to be 1 at the i node and 0 at all other nodes. Under ideal conditions, one of
the output nodes is actually redundant because the output of the third node is complementary to the other two. For both
the 1-output-node ANN and the 3-output-node ANN, we applied 2-D ROC analysis to the output node that distinguished
class a from the other two classes and compared the A, values.

Simulation Study

We performed a simulation study to evaluate the different approaches discussed above. For this study, we
assumed that the three class distributions were multivariate normal with diagonal covariance matrices. In a given
experiment, 1000 samples were randomly drawn from the population for each of the classes. A subset of Ny trainers
was randomly drawn from the 1000 available samples of each class and the rest, (1000-Ny,y), of the samples were held
out as testers. Ny, Was varied from 20 to 600 per class for the linear classification study, and varied from 20 to 500 for
the ANN study. For each condition, the experiment was repeated 50 times such that a new set of 1000 samples per class
were drawn from the population. The dependence of the performance index, either A, or NVUS, for each of the
classification approaches on training sample size was evaluated. The ANNs were assumed to have one hidden layer with
the number of hidden nodes equal to the number of input nodes. Backpropagation with a delta-bar-delta rule was used
for training of the ANNs.
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3. RESULTS

~ For comparison of the 3-class and 2-class approaches using linear classification, we assumed a 12-D
multivariate normal feature space with covariance matrices /, 81, 81 for class a, b, n, respectively. The comparison of A,
as a function of 1/Ny, is plotted in Fig. 6. It can be seen that, for a given approach, when the design sample size is
limited, the training (resubstitution) A, is optimistically biased and the test (holdout) A, is pessimistically biased, in
comparison with the A, at Neain—co. The biases decrease as Ny, increases. In the limit of Nirain— oo, the training and
test A, approach essentially the same value. The A, obtained from the 3-class approach is consistently higher than that
from the 2-class approach for a given Ny,

Fig. 7 shows the comparison of the NVUS for the 3-class and 2-class approaches using linear classification in
the same feature space. The characteristics of the curves are very similar to those observed in Fig. 6. The training
NVUS is optimistically biased whereas the test NVUS is pessimistically biased compared to the limit achieved with
large design sample size. The NVUS from the 3-class approach is again consistently higher than that from the 2-class
approach for a given Ny,

For the comparison of the 3-output-node and 1-output-node ANNS, we first assumed a k-D (k=3, 6, 9, 12)
multivariate normal feature space with equal covariance matrices /, I, I for class a, b, n, respectively. The dependence of
A; on 1/Nyi, is shown in Fig. 8(a) for the 3-output-node ANN and in Fig. 8(b) for the 1-output-node ANN. The
characteristics of the A,-versus-1/Ny,, curves are very similar to those obtained in our previous study of 2-class
classification problems’. The training A, is optimistically biased and the test A, is pessimistically biased compared with
the A, values at Nmin—0. The biases increase with the dimensionality of the feature space for a given Ny, and
decrease with increasing design sample size. It can be seen that the A, values in the limit of Niain—>oo are very similar
for the 3-output-node and the 1-output-node ANNS. For a given N, the biases of the 3-output-node ANN are larger
than those of the 1-output-node ANN for the high dimensional feature spaces, probably because of the larger number of
weights that need to be trained in the 3-output-node ANN with the finite design samples. For comparison, we also
trained a linear discriminant classifier to differentiate class a from class (b+n) and plotted the A,—versus-1/Ny,, curves
in Fig. 8(c). The A, values in the limit of Nrair—co from the linear classifiers are again very similar to those from the
ANNGs. These results indicate that the 3-output-node or the 1-output-node ANNs is basically performing 2-class
classification at each of its output nodes. It is interesting to note that, when Ny, is small, the biases in A, from the
linear classifier are much smaller than those from the ANNs. Therefore, in this feature space, when the design sample
size is small, a linear classifier may be preferred over the ANNs because the performance of the trained linear classifiers
is superior to that of the ANNs for unknown test samples.

The relative performance of the ANNs and linear classifiers depends strongly on the configuration of the class
distributions, however. This can be demonstrated by comparing their performances in another multivariate normal
feature space with unequal covariance matrices: class a had an identity matrix /, class b had a diagonal matrix with its
diagonal elements varying from 1 to 2 in equal increment, class n had a diagonal matrix with its diagonal elements
varying from 1 to 3 in equal increment. The three class means were lined up along a straight line in the k-D feature
space. Fig. 9 shows an example of the class distributions in a 2-D feature space. The performances of the three
classifiers in distinguishing class a, which is in the middle, from class b and class n are compared in Figs. 10(a) to 10(c).
Under these conditions, the 3-output-node classifiers had slightly higher test A, when N, was small, but the A, in the
limit of Nemin—co seemed to approach a level slightly lower than those of the 1-output-node ANN for the higher
dimensional (9-D and 12-D) feature spaces. As expected, the linear classifiers were not able to distinguish the class a in
the middle of class b and class n. Their performance was close to random guess for all sample sizes. These indicated
that ANNs can be superior to a linear classifier for classification tasks with complex class distributions.

4. CONCLUSIONS
In this study, we explored some properties of 3-class and 2-class approaches to a 3-class classification task

under simplifying conditions. By using Monte Carlo simulation study, we have examined the dependence of the
performances of different classification schemes on design sample sizes for some feature space configurations. We
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found that a 3-class approach can achieve higher classification accuracy than a 2-class approach under some conditions.
Applying a 2-D ROC analysis to the output of a 3-output-node ANN achieved similar classification accuracy as that of a
1-output-node ANN. The ANNs may not be the method of choice for some classification tasks when the available
design sample size is small. A complete treatment of 3-class classification using a 6-D ROC analysis is very complex
and was not attempted in this preliminary study. Further investigation is underway to investigate if 3-class approaches
can improve the accuracy for some classification tasks in CAD.
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Fig. 9. A 3-class feature space with multivariate normal class distributions. The covariance matrices are diagonal and the three
class means are located along a line. The example is illustrated in 2-D.
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ABSTRACT

We conducted an observer performance study using receiver operating characteristic (ROC) methodology to
evaluate the effects of computer-aided diagnosis (CAD) on radiologists’ performance for characterization of masses on
serial mammograms. The automated CAD system, previously developed in our laboratory, can classify masses as
malignant or benign based on interval change information on serial mammograms. In this study, 126 temporal image
pairs (73 malignant and 53 benign) from 52 patients containing masses on serial mammograms were used. The
corresponding masses on each temporal pair were identified by an experienced radiologist and automatically segmented
by the CAD program. Morphological, texture, and spiculation features of the mass on the current and the prior
mammograms were extracted. The individual features and the difference between the corresponding current and prior
features formed a multidimensional feature space. A subset of the most effective features that contained the current,
prior, and interval change information was selected by a stepwise procedure and used as input predictor variables to a
linear discriminant classifier in a leave-one-case-out training and testing resampling scheme. The linear discriminant
classifier estimated the relative likelihood of malignancy of each mass. The classifier achieved a test A, value of 0.87.
For the ROC study, 4 MQSA radiologists and 1 breast imaging fellow assessed the masses on the temporal pairs and
provided estimates of the likelihood of malignancy without and with CAD. The average A, value for the likelihood of
malignancy estimated by the radiologists was 0.79 without CAD and improved to 0.87 with CAD. The improvement was
statistically significant (p=0.0003). This preliminary result indicated that CAD using interval change analysis can
significantly improve radiologists’ accuracy in classification of masses and thereby may increase the positive predictive
value of mammography.

Keywords: Computer-Aided Diagnosis, Interval Changes, ROC Observer Study, Classification, Mammography, Breast
Cancer.

1. INTRODUCTION

Mammography is currently the most sensitive method for detecting early breast cancer, and it is also the most
practical screening exam '? compared with other breast imaging techniques. However, the specificity of mammography
is relatively low, only 15-30% of suspected breast lesions recommended for biopsy are actually malignant *°, The
unnecessary biopsies increase health care costs and cause patient anxiety and morbidity. If the specificity of
differentiating malignant and benign mammographic lesions can be improved, the efficacy of mammography will be
enhanced.

‘L.H. (correspondence): e-mail:lhadjiski @umich.edu
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One of the important techniques that radiologists use in mammographic interpretation is to compare the current
mammograms of a patient with those obtained in previous years, if available. The interval change information can help
the detection of abnormalities, and identification of malignant breast lesions. It is shown that comparison with prior
mammograms can improve both the sensitivity and specificity in breast cancer diagnosis .

In an early investigation, Chan et al. ® demonstrated that computer-aided diagnosis (CAD) could improve
significantly radiologists’ detection of subtle mammographic microcalcification in an ROC study, This promising result
stimulated continued development of CAD systems. To date, a number of CAD algorithms have been developed to
detect suspicious masses and microcalcifications and to distinguish malignant and benign lesions on mammograms.
Several ROC studies have shown that CAD systems could improve radiologists’ accuracy in characterization of breast
lesions. It has also been reported that CAD systems can increase the detection of breast cancers on screening

mammograms in clinical practice®'.

Chan et al !! performed an observer study to evaluate the effects of CAD, designed for characterization of
malignant and benign masses on single view mammograms'?, on radiologists’ diagnostic accuracy. They found that the
radiologists’ accuracy for classification of masses as malignant or benign in terms of the area under receiver operating
characteristic (ROC) curve (A,) was significantly improved (p=0.022 for one-view reading and 0.007 for two-view
reading) with CAD compared to that without CAD. Huo et al ** also conducted an observer study with 12 radiologists
to classify masses on multiple views of mammograms. They also found that the radiologists’ performance in terms of A,
was significantly improved (p=0.001) with computer aid. Jiang et al '* performed an observer study to evaluate the
effect of CAD on radiologists’ classification of microcalcification clusters on mammograms. They found that with the
computer aid the radiologists achieved a statistically significant improvement (p<0.0001).

The CAD systems for lesion classification so far employed information from a single exam.'>'*", Based on the
experiences of radiologists, it can be expected that even higher accuracy may be achieved if the computer can utilize the
interval change information from multiple exams for classification. We recently®® developed a classification scheme that
combines prior and current information automatically extracted from masses on prior and current mammograms,
respectively. We found that the classifier using the combined prior and current information performed significantly
better (p=0.015) in terms of A, than the classifier using current information alone. The current study investigated the
effects of CAD on assisting radiologists in evaluating interval changes in serial mammograms. To our knowledge, this
is the first ROC experiment to evaluate the effects of a computer classifier using interval change information on
radiologists’ diagnosis of breast cancers. '

2. MATERIALS AND METHODS
2.1 Data set

We selected a set of 126 temporal pairs of mammograms containing biopsy-proven masses on the current
mammograms from our database. The mammograms in the database were digitized consecutively from the patients who
had undergone breast biopsy in our department. The selection criterion used in the current study was that the case had
serial exams in which a corresponding mass could be identified. The mammograms thus contained masses covering a
range of sizes and conspicuity that will be seen in clinical practice. The data set consisted of 220 mammograms from 52
patients. The mammograms were digitized with a LUMISCAN 85 laser scanner at a pixel resolution of 50um X 50um
and 4096 gray levels. The image matrix size was reduced by averaging every 2 x 2 adjacent pixels and down-sampled by
a factor of 2 to obtain images with a pixel size of 1004om X 100um for analysis by the computer.

There were 53 biopsy proven masses (32 malignant and 21 benign) in the 52 cases. The 220 mammograms
contained different mammographic views (CC, MLO, and lateral views) and multiple serial examinations of the masses
including the examination when the biopsy decision was made. By matching masses of the same view from two different
examinations, a total of 126 temporal pairs were formed, of which 73 were malignant and 53 benign. Since all cases in
this data set had undergone biopsy, the benign masses in this set could not be distinguished easily from the malignant
ones based on current mammographic criteria. For the malignant masses in this data set, the average mass size was 7.9
mm on the prior mammograms and 12.0 mm on the current mammograms. The corresponding sizes were 9.8 mm and
11.4 mm, respectively, for the benign masses.
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To simulate a more realistic clinical situation 34 additional temporal pairs containing corresponding normal
structures in the serial mammograms were also included. In this way the radiologist also has to distinguish mass-
mimicking fibroglandular tissue from malignant masses. The temporal pairs had a time interval of 6 to 48 months.
More than 67% of the pairs had a time interval of 12 months.

2.2 Design of classifier for classification of masses in serial mammograms

We have developed a novel classification technique that utilizes the current and prior information on serial
mammograms to characterize the masses. The classification technique has been described in detail elsewhere?®, The
method is summarized in the flowchart shown in Figure 1. Initially a region of interest (ROI) containing the mass was
defined by a radiologist on both the current and prior mammograms. Automatic segmentation of the mass within each
ROI was performed based on an active contour model 2%2, A set of texture, morphological, and spiculation features
were extracted for each mass.

Current,
Prior,
Difference
Features

LDA

Discriminant Score

Figure 1. Block-diagram of the classification method.

The texture features were based on run-length statistics (RLS) matrices 2. The RLS matrices were computed
from the images obtained by the rubber band straightening transform (RBST) 2. The RBST maps a band of pixels
surrounding the mass onto a rectangular region. Five texture measures were extracted from the vertical and horizontal
gradient images derived from the RBST image in two directions 2. Therefore, for each ROI, a total of 20 RLS features
were calculated. Morphological features were extracted from the automatically segmented mass shape and gray levels
224, Spiculation features were extracted by using the statistics of the image gradient direction relative to the normal
direction to the mass border in a ring of pixels surrounding the mass 22, A total of 35 features (20 RLS, 12
morphological and 3 spiculation) were therefore extracted from each ROL Additionally, difference features were
obtained by subtracting a prior feature from the corresponding current feature, resulting in 35 difference features.

A “leave-one-case-out” resampling scheme was used for the training and testing of the classifier. In order to
reduce the dimensionality of the feature space, a stepwise feature selection was employed to select the most effective
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feature subset from each training cycle. An average of 7 features were selected for the classification task from the
training subsets.

A relative malignancy rating by the computer classifier on a scale of 1 to 10 was provided to the radiologists
for the reading with CAD. The relative malignancy rating was obtained by linearly scaling the classifier output within
the interval between 1 and 10 and then rounding the result to the closest integer. A higher rating corresponded to a
higher likelihood of being malignant. Gaussian functions were fitted to the distributions of the malignant and benign
samples to obtain a fitted binormal distribution with the classifier’s malignancy ratings scaled to the range of 1 to 10
(Figure 2). The fitted distribution was displayed on the graphical user interface as a reference when the radiologist
evaluated the cases using CAD.
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Figure 2. Binormal distribution fitted to the histogram.

2.3 Radiologist’s classification of masses in serial mammograms

The observer study was designed to compare radiologists’ performance on the classification of malignant and
benign breast masses with and without CAD. The ROIs extracted from the current and the prior mammograms
containing the corresponding mass was displayed side-by-side on a display monitor. The observers’ performance was
evaluated under two reading conditions. In the first reading condition, the radiologist read the temporal image pair of
the mass without computer aid. In the second reading condition, the radiologist read the temporal pair with computer
classifier’s relative malignancy rating of the mass displayed on the screen. The observer was asked to provide an
estimate of the likelihood of malignancy of the mass in a 100-point rating scale under each reading condition. Four
MQSA radiologists and one breast imaging fellows participated as observers in this study.

A counter-balanced design was used in arranging the reading orders in different modes and the case orders in
different reading sessions for the observers. This approach would minimize the potential effects such as learning,
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fatigue, and memorization on the outcomes of the observer experiments. A graphic user interface was developed for the
purpose of presenting the temporal pairs of mass ROIs to the radiologists and recording their ratings. Each observer
underwent a training session before the actual reading sessions to familiarize them with the performance of the CAD
system and the experimental procedure.

2.4 ROC analysis

The likelihood of malignancy ratings of the individual observers for the two reading conditions were analyzed
by using ROC methodology. A binormal ROC curve was fitted to each observer’s 100-point rating data for each
reading condition by the LABROC program using maximum likelihood estimation.? The classification accuracy was
quantified by using the total area under the fitted ROC curve, A,,. The slope and the intercept parameters for the
individual ROC curves were also estimated by the LABROC program. For each reading condition, the average
performance of the radiologists was estimated as the area under an average ROC curve, which was derived from the
average slope and intercept parameters of the 5 individual observer’s ROC curves for that reading condition. The
statistical significance of the difference in A, between the two reading conditions was estimated by the Student’s two-
tailed paired t-test on the 5 pairs of individual observer’s A, values.

3. RESULTS

The A, values for the 5 radiologists participating in the study for the two reading conditions with and without
CAD are presented in Fig 3. The computer classifier’s test A, value was 0.87. The average ROC curves for the 5
observers when reading with and without CAD were plotted in Fig.4. The A, value from the average ROC curve was
0.79 for reading without CAD and 0.87 for reading with CAD. The radiologist performance was improved, both
individually and on average, when reading with the CAD system. The improvement in the average A, between the
reading without CAD and the reading with CAD was statistically significant (Student’s two-tailed paired t-test,
p=0.0003).

The computer classifier’s A, value of 0.87 was higher than the individual radiologists’ A, values obtained
under the reading condition without CAD. The relatively low accuracy of the radiologists in classifying the masses
reflected the fact that these were difficult cases that all had been recommended for biopsy. All five radiologists
improved their accuracy in classification of the malignant and benign masses when the CAD system was available as a
second opinion. Two radiologists achieved an A, higher than that of the computer classifier under the reading condition
with CAD. We did not observe specific differences between the breast imaging fellow compared to the MQSA-
approved radiologists. The improvement in A, ranged between 0.06 and 0.1.

4. CONCLUSION

We have performed an observer ROC study to evaluate the effects of computer-aided diagnosis on radiologists’
characterization of masses on serial mammograms. In this observer study the radiologists improved their performance
with statistically significance (p = 0.0003) when their reading without computer aid was compared to that with computer
aid. These results suggest that CAD may be helpful in improving the accuracy of malignant and benign mass
characterization.
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Figure 3. The area under ROC curve, A,, for the characterization of the masses in 126 pairs of serial mammograms by
5 radiologists under two reading conditions: without CAD and with CAD. The average A, for the two reading
conditions: no CAD (A,=0.79), with CAD (A,=0.87).

1.0

0.8

0.6

With CAD

0.4

0.2

True Positive Fraction

0-0 1 T T T T Y ] ¥ I L
0.0 02 04 0.6 0.8 1.0

False Positive Fraction

Figure 4. Area under ROC curve for the mode without CAD and the mode with CAD by the 5 radiologists. Average
area for the two reading modes: No CAD (A,=0.79), With CAD (A,=0.87). The difference is statistically significant
(Student paired t-test, p=0.0003).
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